OPTIMIZING WELL PORTFOLIO PERFORMANCE IN UNCONVENTIONAL RESERVOIRS A CASE STUDY

AGENDA

- Data Mining Virtuous Cycle
- Data Mining: What is it?
- Data Mining: O&G Input Space
- Deterministic to Probabilistic
- SEMMA Process: Case Studies

"THAT'S your Ark for the Big Data flood? Noah, you will need a lot more storage space!"

Data Mining: Virtuous Cycle

"Those who do not learn from the past are condemned to repeat it."

George Santayana

Data Mining: What is it?

- Data Mining Styles
 - Hypothesis Testing
 - Directed Data Mining
 - Undirected Data Mining

Data Mining: O&G Input Space

Deterministic to Probabilistic

CASE STUDY

THE SEMMA PROCESS

COMPLETIONS STRATEGIES

BUSINESS ISSUES

Multinational operator was trying to qualify well performance in the Pinedale Anticline in western Wyoming. The environment presented several challenges because of commingled productivity from multiple fluvial sand packages in a single wellbore distributed over greater than 5000 feet of gross vertical section

SOLUTION

Generation of a neural network that qualified the relationships between Petrophysical, Geological and Operational Parameters such that the solution could be used in both design and operational phases.

RESULTS AND EXPECTED RESULTS

Data Driven model that assisted in design and operation of

- Well placement
- Stage management
- Completions design
- Proppant design

UNCONVENTIONAL GAS

"Data driven models enabled us to accelerate and implement a easy to use and intuitive solution to the multivariate uncertainties inherent in subsurface environments"

Production Engineering Advisor

UNCONVENTIONAL SHELL SPE 135523 TIGHT GAS WELL PERFORMANCE OIL AND GAS

FORECASTING IS A COMPLEX PROCESS IN ITSELF

CASE STUDY: SEMMA	SAMPLE THE DATA
Performance Platform	Performance monitoring and Management
Collaboration & Analytics	Integrated Planning
	SubSurface Intelligence geosciences
Knowledge Platform	Documentation and Compliance, Process Optimization
Information Platform	Data Aggregation, QC, Storage Exploratory Data Analysis Visualization
	SAP Seisific Branch Production Systems PETRA SCADA

Case Study

DATA MODIFICATION

- Traditional DCA
- Probabilistic methodology
- Well Forecasting Solution
 - Bootstrapping module
 - Clustering module
 - Data mining workflow

MODIFY

CREATE MODELS TOWARDS OBJECTIVES

- 1. Cumulative liquid production
- 2. Cumulative oil or gas production
- 3. Water cut
- 4. Initial rate of decline
- 5. Initial rate of production
- 6. Average liquid production

ASSESS FOR OPERATIONALIZATION

Three key goals:

- Automated and semi-automated data QC workflows
- Robust and accurate well portfolio forecasting
- Automated well surveillance with smart alert system

ASSSESS

VALUE FRAMEWORK

THANK YOU

